试题
题目:
观察下列等式,写出你发现的规律:
①3
2
-1
2
=4×2
②4
2
-2
2
=4×3
③5
2
-3
2
=4×4
④( )
2
-( )
2
=( )×( )
…
(1)补全第④式.
(2)将你发现的规律用含字母m的等式表示出来:
n
2
-(n-2)
2
=4×(n-1)
n
2
-(n-2)
2
=4×(n-1)
,其中m为正整数.
答案
n
2
-(n-2)
2
=4×(n-1)
解:(1)第④式6
2
-4
2
=4×5.
(2)规律用含字母m的等式表示为n
2
-(n-2)
2
=4×(n-1).
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
(1)通过观察可知,第④式应为6
2
-4
2
=4×5.
(2)把题目中的式子用含n的形式分别表示出来,从而寻得规律.
通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.
规律型.
找相似题
观察下面的几个算式:
13×17=221可写成100×1×(1+1)+21;
23×27=621可写成100×2×(2+1)+21;
33×37=1221可写成100×3×(3+1)+21;
43×47=2021可写成100×4×(4+1)+21;
…
根据上面规律填空:
(1)83×87可写成
100×8×(8+1)+21
100×8×(8+1)+21
.
(2)(10n+3)(10n+7)可写成
100n(n+1)+21
100n(n+1)+21
.
(3)计算:1993×1997=
3980021
3980021
.
张老师设计了一个计算程序,输入和输出的数据如下表:
输入
数据
1
2
3
4
…
输出
数据
1
2
1
4
1
8
1
16
…
那么,当输入数据是6时,输出的数据是
1
64
1
64
.
一组按规律排列的数:
9
5
,
16
12
,
25
21
,
36
32
,…请推断第n个数是
(n+2
)
2
n
2
+4n
(n+2
)
2
n
2
+4n
.
观察下列各式:①4=2
2
;②4+12=4
2
;③4+12+20=6
2
;④4+12+20+28=8
2
;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)
2
4+12+20+28+36+…+(2n-1)×4=(2n)
2
.
观察下列:1×3=3而3=2
2
-1,3×5=15而15=4
2
-1,5×7=35而35=6
2
-1,…,11×13=143而143=12
2
-1.你猜想到的规律用只含一个字母n的式子表示出来是
n(n+2)=(n+1)
2
-1
n(n+2)=(n+1)
2
-1
.