试题
题目:
有理数a≠1,我们把
1
1-a
称为a的差倒数,如:2的差倒数是
1
1-2
=-1
,-1的差倒数是
1
1-(-1)
=
1
2
.如果
a
1
=-
1
3
,a
2
是a
1
的差倒数,a
3
是a
2
的差倒数,a
4
是a
3
的差倒数,…,依此类推,那么a
2012
=
3
4
3
4
.
答案
3
4
解:a
1
=-
1
3
,
a
3
=
1
1-(-
1
3
)
=
3
4
,
a
3
=
1
1-
3
4
=4,
a
4
=
1
1-4
=-
1
3
,
…,
依此类推,每三个数为一个循环组进行循环,
∵3013÷3=670…3,
∴第3013个数与第3个数相同,为
3
4
.
故答案为:
3
4
.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类;倒数.
根据差倒数的定义依次求出前几个数,
本题是对数字变化规律的考查,差倒数的定义,读懂题目信息,根据差倒数的定义进行计算并求出每三个数为一个循环组进行循环是解题的关键.
规律型.
找相似题
观察下面的几个算式:
13×17=221可写成100×1×(1+1)+21;
23×27=621可写成100×2×(2+1)+21;
33×37=1221可写成100×3×(3+1)+21;
43×47=2021可写成100×4×(4+1)+21;
…
根据上面规律填空:
(1)83×87可写成
100×8×(8+1)+21
100×8×(8+1)+21
.
(2)(10n+3)(10n+7)可写成
100n(n+1)+21
100n(n+1)+21
.
(3)计算:1993×1997=
3980021
3980021
.
张老师设计了一个计算程序,输入和输出的数据如下表:
输入
数据
1
2
3
4
…
输出
数据
1
2
1
4
1
8
1
16
…
那么,当输入数据是6时,输出的数据是
1
64
1
64
.
一组按规律排列的数:
9
5
,
16
12
,
25
21
,
36
32
,…请推断第n个数是
(n+2
)
2
n
2
+4n
(n+2
)
2
n
2
+4n
.
观察下列各式:①4=2
2
;②4+12=4
2
;③4+12+20=6
2
;④4+12+20+28=8
2
;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)
2
4+12+20+28+36+…+(2n-1)×4=(2n)
2
.
观察下列:1×3=3而3=2
2
-1,3×5=15而15=4
2
-1,5×7=35而35=6
2
-1,…,11×13=143而143=12
2
-1.你猜想到的规律用只含一个字母n的式子表示出来是
n(n+2)=(n+1)
2
-1
n(n+2)=(n+1)
2
-1
.