试题
题目:
观察这一列数:
3
4
,
-
5
7
,
9
10
,
-
17
13
,
33
16
,
-
65
19
…依此规律第n个数是
(-1
)
n+1
2
n
+1
3n+1
(-1
)
n+1
2
n
+1
3n+1
答案
(-1
)
n+1
2
n
+1
3n+1
解:已知一列数的分子、分母分别组成新的两列数,即3,5,9,17,33,65…和4,7,10,13,16,19,…,
分子部分:3=2
1
+1,5=2
2
+1,9=2
3
+1,17=2
4
+1,33=2
5
+1,65=2
6
+1,…由此第n项分子可表示为:2
n
+1.
分母部分:4=3×1+1,7=3×2+1,10=3×3+1,13=3×4+1,16=3×5+1,19=3×6=1,…由此第n项分母可表示为:3n+1.
又由已知一列数的偶数项为负数,所以符号可以表示为:(-1)
n+1
.
所以已知一列数的第n个数是:(-1)
n+1
2
n
+1
3n+1
.
故答案为:(-1)
n+1
2
n
+1
3n+1
.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
由已知一列数,它们的分子、分母分别组成新的两列数,即3,5,9,17,33,65…和4,7,10,13,16,19,…,分析观察这两列数,通过归纳总结可找出规律,根据规律表示出第n个数.再由已知偶数项是负数,所以符号可以表示为(-1)
n+1
.
此题考查的知识点是数字的变化类问题,也考查学生分析归纳总结数字变化规律的能力.解答此题的关键是分别把它们的分子、分母分别组成新的两列数,即3,5,9,17,33,65…和4,7,10,13,16,19,…,进行分析归纳.
规律型.
找相似题
观察下面的几个算式:
13×17=221可写成100×1×(1+1)+21;
23×27=621可写成100×2×(2+1)+21;
33×37=1221可写成100×3×(3+1)+21;
43×47=2021可写成100×4×(4+1)+21;
…
根据上面规律填空:
(1)83×87可写成
100×8×(8+1)+21
100×8×(8+1)+21
.
(2)(10n+3)(10n+7)可写成
100n(n+1)+21
100n(n+1)+21
.
(3)计算:1993×1997=
3980021
3980021
.
张老师设计了一个计算程序,输入和输出的数据如下表:
输入
数据
1
2
3
4
…
输出
数据
1
2
1
4
1
8
1
16
…
那么,当输入数据是6时,输出的数据是
1
64
1
64
.
一组按规律排列的数:
9
5
,
16
12
,
25
21
,
36
32
,…请推断第n个数是
(n+2
)
2
n
2
+4n
(n+2
)
2
n
2
+4n
.
观察下列各式:①4=2
2
;②4+12=4
2
;③4+12+20=6
2
;④4+12+20+28=8
2
;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)
2
4+12+20+28+36+…+(2n-1)×4=(2n)
2
.
观察下列:1×3=3而3=2
2
-1,3×5=15而15=4
2
-1,5×7=35而35=6
2
-1,…,11×13=143而143=12
2
-1.你猜想到的规律用只含一个字母n的式子表示出来是
n(n+2)=(n+1)
2
-1
n(n+2)=(n+1)
2
-1
.