试题
题目:
某信用卡上的号码由14位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,那么x的值是
4
4
.
9
x
7
答案
4
解:如表,
9
a
b
c
x
d
e
f
7
由题意知:9+a+b=20,得a+b=11,
a+b+c=20,得c=9;
同理7+f+e=20,得e+f=13,
d+e+f=20,得d=7;
又因c+x+d=20,所以x=4.
故填4.
考点梳理
考点
分析
点评
专题
规律型:数字的变化类.
由任何相邻的三个数字之和都等于20,可知9后面的两数和为11,7前面的两个数字和为13,因此可推出x前面的数字为9,它的后面的数字是7,由此得出x的值.
此题主要利用相邻三个数的和为20,利用已知的数逐步推出x左右相邻的两个数,就可以解决问题.
规律型.
找相似题
观察下面的几个算式:
13×17=221可写成100×1×(1+1)+21;
23×27=621可写成100×2×(2+1)+21;
33×37=1221可写成100×3×(3+1)+21;
43×47=2021可写成100×4×(4+1)+21;
…
根据上面规律填空:
(1)83×87可写成
100×8×(8+1)+21
100×8×(8+1)+21
.
(2)(10n+3)(10n+7)可写成
100n(n+1)+21
100n(n+1)+21
.
(3)计算:1993×1997=
3980021
3980021
.
张老师设计了一个计算程序,输入和输出的数据如下表:
输入
数据
1
2
3
4
…
输出
数据
1
2
1
4
1
8
1
16
…
那么,当输入数据是6时,输出的数据是
1
64
1
64
.
一组按规律排列的数:
9
5
,
16
12
,
25
21
,
36
32
,…请推断第n个数是
(n+2
)
2
n
2
+4n
(n+2
)
2
n
2
+4n
.
观察下列各式:①4=2
2
;②4+12=4
2
;③4+12+20=6
2
;④4+12+20+28=8
2
;…则第n个等式为
4+12+20+28+36+…+(2n-1)×4=(2n)
2
4+12+20+28+36+…+(2n-1)×4=(2n)
2
.
观察下列:1×3=3而3=2
2
-1,3×5=15而15=4
2
-1,5×7=35而35=6
2
-1,…,11×13=143而143=12
2
-1.你猜想到的规律用只含一个字母n的式子表示出来是
n(n+2)=(n+1)
2
-1
n(n+2)=(n+1)
2
-1
.