试题
题目:
如图,M是边长为4的正方形AD边的中点,动点P自A点起,由A·B·C·D匀速运动,直线MP扫过正方形所形成面积为y,点P运动的路程为x,则表示y与x的函数关系的图象为( )
A.
B.
C.
D.
答案
D
解:点P在AB段时,函数解析式是:y=
1
2
AP·AM=
1
2
×2x=x,是正比例函数;
点P在BC段时:y=2x-4;这段的直线的斜率大于AB段的斜率.故A,B选项错误;
点P在CD段时,面积是△ABC的面积加上△ACP的面积,△ABC的面积不变,而△ACP中CP边上的高一定,因而面积是CP长的一次函数,因而此段的面积是x的一次函数,应是线段.故C错误,正确的是D.
故选D.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
分别求出P在AB段,BC段,CD段的函数解析式或判断函数的类型,即可判断.
本题主要考查了函数的性质,注意分段讨论是解决本题的关键.
压轴题;动点型.
找相似题
(2013·牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2012·鞍山)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
(2011·巴中)如图所示,一只小虫在折扇上沿O→A→B→O路径爬行,能大致描述小虫距出发点O的距离s与时间t之间的函数图象是 ( )
(2010·厦门)如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C·B·A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系( )