试题
题目:
如图,在矩形ABCD中,AB=1,BC=2,动点E从点C出发,以每秒1个单位的速度沿路线C→D→A作匀速运动,点E到达A点运动停止,那么△BEC的面积y与点E运动的时间x秒之间的函数图象大致是( )
A.
B.
C.
D.
答案
D
解:①当点E在CD上时,此时x≤1,
∵AB=1,BC=2,动点E从点C出发,E点在CD上时,CE=x,BC=2,
∴△ABP的面积S=
1
2
×BC×CE=
1
2
×2x=x;
当点E在DA上时,此时1<x<3,
△BEC的高是1,底边是2,所以面积是1,即s=1;
综上可得s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.
所以只有D符合要求.
故选D.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
运用动点函数进行分段分析,当点E在CD上,及在DA上时,分别求出函数解析式,再结合图象得出符合要求的解析式.
此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键,有一定难度.
动点型.
找相似题
(2013·牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2012·鞍山)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
(2011·巴中)如图所示,一只小虫在折扇上沿O→A→B→O路径爬行,能大致描述小虫距出发点O的距离s与时间t之间的函数图象是 ( )
(2010·厦门)如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C·B·A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系( )