试题
题目:
如图,AC=BC,点D是以线段AB为弦的圆弧的中点,AB=4,点E是线段CD上任意一点,点F是线段AB上的动点,设AF=x,AE
2
-FE
2
=y,则能表示y与x的函数关系的图象是( )
A.
B.
C.
D.
答案
C
解:如右图所示,延长CE交AB于G.设AF=x,AE
2
-FE
2
=y;
∵△AEG和△FEG都是直角三角形
∴由勾股定理得:AE
2
=AG
2
+GE
2
,FE
2
=FG
2
+EG
2
,
∴AE
2
-FE
2
=AG
2
-FG
2
,即y=2
2
-(2-x)
2
=-x
2
+4x,
这个函数是一个二次函数,抛物线的开口向下,对称轴为x=2,与x轴的两个交点坐标分别是(0,0),(4,0),顶点为(2,4),自变量0<x<4.
所以C选项中的函数图象与之对应.
故选C.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
延长CE交AB于G,△AEG和△FEG都是直角三角形,运用勾股定理列出y与x的函数关系式即可判断出函数图象.
本题考查了几何与函数相结合的题型,同学们应注意运用勾股定理的重要性,它就是解决此题的关键.
动点型.
找相似题
(2013·牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2012·鞍山)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
(2011·巴中)如图所示,一只小虫在折扇上沿O→A→B→O路径爬行,能大致描述小虫距出发点O的距离s与时间t之间的函数图象是 ( )
(2010·厦门)如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C·B·A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系( )