试题
题目:
已知点E,F,A,B在直线l上,正方形EFGH从如图所示的位置出发,沿直线l向右匀速运动,直到EH与BC重合.运动过程中正方形EFGH与正方形ABCD重合部分的面积S随时间t变化的图象大致是( )
A.
B.
C.
D.
答案
C
解:根据题意可知,分四种情况讨论,
①GF在AD左边,重合部分的面积S为0;
②EF在AD右边,且HE在AD左边,重合部分的面积S逐渐增大;
③正方形EFGH在正方形ABCD的内部,重合部分的面积S不变;
④EF在BC右边,且HE在BC左边;重合部分的面积S逐渐减小,且与第②变化对称;
故答案为C.
考点梳理
考点
分析
点评
专题
动点问题的函数图象.
本题是小正方形向大正方形中平移,分四段进行讨论,①GF在AD左边,②EF在AD右边,且HE在AD左边,③正方形EFGH在正方形ABCD的内部,④EF在BC右边,且HE在BC左边;分别讨论其面积关系,易得答案.
解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的函数关系,在本题中只要根据题意得到重合面积大小变化的规律即可.
应用题;分类讨论.
找相似题
(2013·牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2012·鞍山)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
(2011·巴中)如图所示,一只小虫在折扇上沿O→A→B→O路径爬行,能大致描述小虫距出发点O的距离s与时间t之间的函数图象是 ( )
(2010·厦门)如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C·B·A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系( )