试题
题目:
(2012·景宁县模拟)如图1,在直角梯形ABCD中,∠B=90°,DC∥AB,动点P从B点出发,沿折线B→C→D→A运动,点P运动的速度为2个单位长度/秒,若设点P运动的时间为x秒,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积为( )
A.16
B.48
C.24
D.64
答案
B
解:根据图2可知当点P在CD上运动时,△ABP的面积不变,与△ABC面积相等;
且不变的面积是在x=3,x=7之间;
可知当x=3时,点P恰好到点C处,
此时P点运动3秒,即BC=6;
同理可得CD=8,AD=10;
过点D作DN⊥AB于点N,则有DN=BC=6,BN=CD=8,
在Rt△ADN中,AN=
AD
2
-
DN
2
=8,
所以AB=BN+AN=8+8=16,
所以△ABC的面积为
1
2
AB·BC=
1
2
×16×6=48.
故选B.
考点梳理
考点
分析
点评
专题
动点问题的函数图象;三角形的面积;直角梯形.
根据题意,分析P的运动路线,分2个阶段分别讨论,可分别得处DC、BC和AD的值,同时过点D作DN⊥AB于点N,即可得出AN的长度,进而可得△ABC的面积,即可得出答案.
本题主要考查了动点问题的函数图象问题与三角形面积的求法等知识点,要求学生能够要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
压轴题.
找相似题
(2013·牡丹江)如图所示:边长分别为1和2的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为( )
(2013·莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN
2
=y,则y关于x的函数图象大致为( )
(2012·鞍山)如图,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于点E,且E是BC中点;动点P从点E出发沿路径ED→DA→AB以每秒1个单位长度的速度向终点B运动;设点P的运动时间为t秒,△PBC的面积为S,则下列能反映S与t的函数关系的图象是( )
(2011·巴中)如图所示,一只小虫在折扇上沿O→A→B→O路径爬行,能大致描述小虫距出发点O的距离s与时间t之间的函数图象是 ( )
(2010·厦门)如图,正方形ABCD的边长为2,动点P从C出发,在正方形的边上沿着C·B·A的方向运动(点P与A不重合).设P的运动路程为x,则下列图象中△ADP的面积y关于x的函数关系( )