试题
题目:
如图,E,F分别为等边△ABC的边AB,AC上的点,把△AEF沿EF折叠,点A恰好落在BC边上的点D处.已知BE=4,CF=2,设BD=x,则DC=
8
x
8
x
.(用含x的代数式表示)
答案
8
x
解:由折叠的性质可得出∠A=∠D=60°,
又∵∠EDC=∠B+∠BED(三角形外角的性质),
∴∠BED=∠CDF,
∴△BED∽△CDF,
故可得:
BE
DC
=
BD
CF
,即
4
DC
=
x
2
,
解得:DC=
8
x
.
故答案为:
8
x
.
考点梳理
考点
分析
点评
专题
翻折变换(折叠问题);等边三角形的性质.
由折叠的性质可得出∠A=∠D=60°,再利用外角的性质∠EDC=∠B+∠BED,可得出∠BED=∠CDF,从而可判定△BED∽△CDF,利用相似三角形的对应边成比例可得出DC关于x的代数式.
此题考查了折叠的性质及相似三角形的判定与性质,解答本题的关键是得出△BED∽△CDF,难度一般,要注意相似三角形的对应边成比例.
数形结合.
找相似题
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )
(2011·西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为( )
(2011·乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为( )