试题

题目:
青果学院如图:等边三角形ABC中,D、E分别是AB、BC边上的点.AD=BE,AE与CD交于点F,DG⊥AE于G,则cos∠GFD=
1
2
1
2

答案
1
2

解:∵在等边三角形ABC中,AD=BE,
∴EC=BD,
∵在△AEC和△CDB中
AC=AB
∠ACE=∠B
CE=BD

∴△AEC≌△CDB(SAS),
∴∠BCD=∠CAE,
∵∠DFG=∠CAE+∠ACD=∠BCD+∠ACF=60°,
∴cos∠GFD=cos60°=
1
2

故答案为:
1
2
考点梳理
等边三角形的性质;全等三角形的判定与性质;特殊角的三角函数值.
首先根据等边三角形的性质得出EC=BD,进而利用全等三角形的判定与性质得出,∠DFG=∠CAE+∠ACD=∠BCD+∠ACF=60°,即可得出答案.
此题主要考查了等边三角形的性质以及全等三角形的判定与性质等知识,根据已知得出∠DFG=∠CAE+∠ACD=∠BCD+∠ACF是解题关键.
找相似题