试题

题目:
青果学院如图,等边△ABC中,点D、E分别是边AB、AC的中点,CD、BE交于点O,求∠BOC是多少度?
答案
解:∵△ABC为等边三角形,点D、E分别是边AB、AC的中点;
∴∠ADC=∠BEA=90°;
∵在四边形ADOE中,∠A=60°,∠ADC=∠BEA=90°;
∴∠DOE=360°-60°-90°-90°=120°;
∵对顶角相等;
∴∠BOC=120°.
解:∵△ABC为等边三角形,点D、E分别是边AB、AC的中点;
∴∠ADC=∠BEA=90°;
∵在四边形ADOE中,∠A=60°,∠ADC=∠BEA=90°;
∴∠DOE=360°-60°-90°-90°=120°;
∵对顶角相等;
∴∠BOC=120°.
考点梳理
等边三角形的性质.
根据等边三角形的性质,确定CD、BE既为等边三角形的中线,又是三角形的高,然后根据四边形的内角和是360度解出∠DOE的度数,根据对顶角相等即可得出∠BOC的度数.
本题考查的是等边三角形的性质,熟知等边三角三角形“三线合一”的性质是解答此题的关键.
探究型.
找相似题