试题
题目:
(2012·徐汇区一模)在△ABC中,AB=AC=5,BC=8,AD⊥BC,垂足为D,BE是边AC上的中线,AD与BE相交于点G,那么AG的长为 ( )
A.1
B.2
C.3
D.无法确定
答案
B
解:∵在△ABC中,AB=AC,AD⊥BC,
∴AD=
5
2
-(8÷2
)
2
=3,
∵中线BE与高AD相交于点G,
∴点G为△ABC的重心,
∴AG=3×
2
3
=2.
故选B.
考点梳理
考点
分析
点评
等腰三角形的性质;三角形的角平分线、中线和高;勾股定理.
先根据等腰三角形的性质和勾股定理求出AD,再判断点G为△ABC的重心,然后根据三角形重心的性质来求AG的长.
本题考查了等腰三角形的性质和勾股定理以及三角形的重心的性质,判断点G为三角形的重心是解题的关键.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为( )
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )