试题
题目:
(2013·南昌)如图,正六边形ABCDEF中,AB=2,点P是ED的中点,连接AP,则AP的长为( )
A.2
3
B.4
C.
13
D.
11
答案
C
解:如图,连接AE,
在正六边形中,∠F=
1
6
×(6-2)·180°=120°,
∵AF=EF,
∴∠AEF=∠EAF=
1
2
(180°-120°)=30°,
∴∠AEP=120°-30°=90°,
AE=2×2cos30°=2×2×
3
2
=2
3
,
∵点P是ED的中点,
∴EP=
1
2
×2=1,
在Rt△AEP中,AP=
AE
2
+EP
2
=
(2
3
)
2
+1
2
=
13
.
故选C.
考点梳理
考点
分析
点评
专题
勾股定理.
连接AE,求出正六边形的∠F=120°,再求出∠AEF=∠EAF=30°,然后求出∠AEP=90°并求出AE的长,再求出PE的长,最后在Rt△AEP中,利用勾股定理列式进行计算即可得解.
本题考查了勾股定理,正六边形的性质,等腰三角形三线合一的性质,作辅助线构造出直角三角形是解题的关键.
压轴题.
找相似题
(2013·重庆)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为( )
(2013·绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE
2
=2(AD
2
+AB
2
),
其中结论正确的个数是( )
(2013·柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为( )
(2012·梧州)如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E.若OD=8,OP=10,则PE的长为( )
(2012·台湾)如图,△ABC中,AB=AC=17,BC=16,M是△ABC的重心,求AM的长度为何?( )