试题
题目:
如图,已知AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,过点C作直线CD⊥AB于点D,点E是AB上一点,直线CE交⊙O于点F,连接BF,与直线CD交于点G.BC=6,BG=2,则FG=
16
16
.
答案
16
解:∵AB是⊙O的直径,
∴∠ACB=90°,
∵CD⊥AB于点D,
∴∠BCG=∠A,
又∠A=∠F,
∴∠BCG=∠F,
又∠CBG=∠FBC,
∴△CBG∽△FBC,
∴
BC
BF
=
BG
BC
,
∵BC=6,BG=2,
即
6
BF
=
2
6
,
∴BF=18,
所以,FG=BF-BG=18-2=16.
考点梳理
考点
分析
点评
相似三角形的判定与性质;余角和补角;圆周角定理.
结合图形,可以先证明△CBG和△FBC相似,两个三角形中已经有一个公共角,只需进一步证明∠BCG=∠F,根据等角的余角相等和圆周角定理,借助中间角∠A即可证明.
熟练应用等角的余角相等和圆周角定理,借助中间角∠A,证明∠BCG=∠F,掌握相似形的判定和性质.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )