试题
题目:
(2004·新疆)如图,已知AB是⊙O的直径,AD∥OC,弧AD的度数为80°,则∠BOC=
50
50
度.
答案
50
解:连接OD,则∠AOD=80°;
在△AOD中,OA=OD;
∴∠A=∠D=(180°-80°)÷2=50°;
∵AD∥OC,
∴∠BOC=∠A=50°.
故答案为:50.
考点梳理
考点
分析
点评
专题
圆周角定理;平行线的性质.
已知弧AD的度数为80°,连接OD,则∠AOD=80°;在等腰三角形AOD中,已知了顶角∠AOD的度数,易求得底角∠A的度数;由于AD∥OC,且∠A和∠BOC是同位角,因此∠BOC=∠A,由此可求出∠BOC的度数.
本题考查圆心角和弧的关系、平行线的性质、圆周角定理等知识的应用.
计算题.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )