试题
题目:
(2009·崇左)如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是
19
19
度.
答案
19
解:∵∠AOB=38°
∴∠C=38°÷2=19°
∵AO∥BC
∴∠OAC=∠C=19°.
考点梳理
考点
分析
点评
圆周角定理.
先根据圆周角定理,求出∠C的度数,再根据两条直线平行,内错角相等,得∠OAC=∠C.
综合运用了圆周角定理和平行线的性质.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )