试题
题目:
如图,⊙O的弦AB垂直于AC,AB=6cm,AC=4cm,则⊙O的半径等于
13
13
cm.
答案
13
解:连接BC,
∵AB⊥AC,
∴∠BAC=90°,
∴BC是⊙O的直径,
∵AB=6cm,AC=4cm,
∴BC=
AB
2
+
AC
2
=2
13
(cm),
∴⊙O的半径为:
13
cm.
故答案为:
13
.
考点梳理
考点
分析
点评
圆周角定理;勾股定理.
首先连接BC,由⊙O的弦AB垂直于AC,即可得BC是直径,又由AB=6cm,AC=4cm,根据勾股定理即可求得BC的长,则可求得⊙O的半径.
此题考查了圆周角定理与勾股定理.此题难度不大,解题的关键是掌握90°的圆周角所对的弦是直径定理的应用.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )