试题
题目:
(2012·包头)如图,△ABC内接于⊙O,∠BAC=60°,⊙O的半径为2,则BC的长为
2
3
2
3
(保留根号).
答案
2
3
解:过点O作OD⊥BC于D,
则BC=2BD,
∵△ABC内接于⊙O,∠BAC=60°,
∴∠BOC=2∠A=120°,
∵OB=OC,
∴∠OBC=∠OCB=
180°-∠BOC
2
=30°,
∵⊙O的半径为2,
∴BD=OB·cos∠OBC=2×
3
2
=
3
,
∴BC=2
3
.
故答案为:2
3
.
考点梳理
考点
分析
点评
圆周角定理;解直角三角形.
首先过点O作OD⊥BC于D,由垂径定理可得BC=2BD,又由圆周角定理,可求得∠BOC的度数,然后根据等腰三角形的性质,求得∠OBC的度数,利用余弦函数,即可求得答案.
此题考查了圆周角定理、垂径定理、等腰三角形的性质以及三角函数等知识.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )