试题
题目:
(2012·永州)如图,已知圆O的半径为4,∠A=45°,若一个圆锥的侧面展开图与扇形OBC能完全重合,则该圆锥的底面圆的半径为
1
1
.
答案
1
解:∵∠A=45°,
∴∠BOC=90°
∴扇形BOC的弧长为
90π×4
180
=2π,
设圆锥的底面半径为r,则2πr=2π
解得r=1,
故答案为1.
考点梳理
考点
分析
点评
专题
圆锥的计算;圆周角定理.
首先求得扇形的圆心角BOC的度数,然后求得扇形的弧长,利用弧长等于圆的底面周长求得圆锥的底面圆的半径即可.
本题考查了圆锥的计算,解题的关键是正确的进行圆锥的有关元素和扇形的有关元素之间的转化.
压轴题.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )