试题
题目:
(2013·佛山)图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=
30°
30°
.
答案
30°
解:∵CA∥OB,
∴∠CAO=∠AOB=30°,
∵OA=OC,
∴∠C=∠OAC=30°,
∴∠AOD=2∠C=60°,
∴∠BOD=60°-30°=30°.
故答案为30°.
考点梳理
考点
分析
点评
专题
圆周角定理;平行线的性质.
根据平行线的性质由CA∥OB得到∠CAO=∠AOB=30°,利用半径相等得到∠C=∠OAC=30°,然后根据圆周角定理得到∠AOD=2∠C=60°,则∠BOD=60°-30°=30°.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.
计算题;压轴题.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )