试题
题目:
(2001·四川)已知:如图,AB为⊙O的直径,AC为弦,CD⊥AB于D.若AE=AC,BE交⊙O于点F,连接CF、DE.
求证:(1)AE
2
=AD·AB;
(2)∠ACF=∠AED.
答案
证明:(1)连接BC,
∵AB为⊙O的直径,
∴∠ACB=90°.
∵CD⊥AB,
∴△ACD∽△ABC.
∴
AC
AD
=
AB
AC
.
∵AC=AE,
∴AE
2
=AD·AB.
(2)∵AE
2
=AD·AB,∠EAD=∠BAE,
∴△ADE∽△AEB.
∴∠AED=∠B.
∵∠ACF=∠B,
∴∠ACF=∠AED.
证明:(1)连接BC,
∵AB为⊙O的直径,
∴∠ACB=90°.
∵CD⊥AB,
∴△ACD∽△ABC.
∴
AC
AD
=
AB
AC
.
∵AC=AE,
∴AE
2
=AD·AB.
(2)∵AE
2
=AD·AB,∠EAD=∠BAE,
∴△ADE∽△AEB.
∴∠AED=∠B.
∵∠ACF=∠B,
∴∠ACF=∠AED.
考点梳理
考点
分析
点评
专题
圆周角定理;相似三角形的判定与性质.
(1)根据AE=AC,可以把结论转化为证明AC
2
=AD·AB,只需连接BC,证明△ACD∽△ABC即可.根据直径所对的圆周角是直角,即可分析得到两个角对应相等;
(2)根据(1)中的结论,即可证明三角形ADE相似于三角形AEB,得到∠AED=∠B,再根据同弧所对的圆周角相等即可证明.
本题主要考查了对相似三角形的判定和性质的掌握和应用.
证明题.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )