试题

题目:
青果学院如图,⊙O是正方形ABCD的外接圆,F是AD的中点,CF的延长线交⊙O于E,那么CF:EF的值是(  )



答案
C
解:∵四边形ABCD是正方形,
∴∠D=90°,AD=CD,
设AD=CD=2a,
∵F是AD的中点,
∴AF=DF=a,
在Rt△CDF中,CF=
CD2+DF2
=
5
a,
∵AF·DF=EF·CF,
∴EF=
AF·DF
CF
=
5
5
a,
∴CF:EF=5:1.
故选C.
考点梳理
圆周角定理;正方形的性质;相似三角形的判定与性质.
由正方形的性质,可得∠D=90°,AD=CD,设AD=CD=2a,又由F是AD的中点,可求得AF=DF=a,由勾股定理即可求得CF的长,又由相交弦定理,求得EF的长,继而求得答案.
此题考查了正方形的性质、相交弦定理以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.
找相似题