试题
题目:
如图,AB是圆O的直径,AD=DC,∠CAB=30°,AC=2
3
.求AD的长.
答案
解:连接OD;
∵D是
AC
的中点,
∴OD垂直平分AC;
∴∠AOD=90°-∠CAB=60°;
又∵OA=OD,
∴△OAD是等边三角形;
∴OA=AD;
Rt△ABC中,∠CAB=30°,AC=2
3
;
∴AB=
AC
cos30°
=4,OA=2;
即:AD=OA=2.
故AD的长为2.
解:连接OD;
∵D是
AC
的中点,
∴OD垂直平分AC;
∴∠AOD=90°-∠CAB=60°;
又∵OA=OD,
∴△OAD是等边三角形;
∴OA=AD;
Rt△ABC中,∠CAB=30°,AC=2
3
;
∴AB=
AC
cos30°
=4,OA=2;
即:AD=OA=2.
故AD的长为2.
考点梳理
考点
分析
点评
圆周角定理;解直角三角形.
连接OD,由垂径定理,易知OD⊥AC,可得∠AOD=60°,即△AOD是等边三角形,因此只需求出AO即⊙O的半径即可.在Rt△ABC中,已知了∠CAB的度数以及AC的长,易求得AB的值,由此得解.
此题主要考查圆周角定理、垂径定理以及解直角三角形的应用.能够根据已知条件发现△OAD是等边三角形,是解答此题的关键.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )