试题
题目:
如图点A,B,C在半径为2cm的⊙O上,若BC=2
3
cm,求∠A的度数.
答案
解:作直径BD,连接CD,如图,则BD=4cm,
∵BD是⊙O的直径,
∴∠BDC=90°,
在Rt△BCD中,CD=
B
D
2
-B
C
2
=
4
2
-
(2
3
)
2
=2cm,
∴∠CBD=30°,
∴∠D=60°,
∴∠A=60°.
解:作直径BD,连接CD,如图,则BD=4cm,
∵BD是⊙O的直径,
∴∠BDC=90°,
在Rt△BCD中,CD=
B
D
2
-B
C
2
=
4
2
-
(2
3
)
2
=2cm,
∴∠CBD=30°,
∴∠D=60°,
∴∠A=60°.
考点梳理
考点
分析
点评
专题
圆周角定理.
作直径BD,连接CD,根据圆周角定理的推论得到∠BDC=90°,则可根据勾股定理计算出CD,从而判断∠CBD=30°,则∠D=60°,然后根据圆周角定理即可得到∠A的度数.
本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了勾股定理和含30度的直角三角形三边的关系.
计算题.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )