试题
题目:
作图题
如图,在6×6的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.
(1)从点A出发的一条线段AB,使它的另一个端点落在格点(即小正方形的顶点)上,且长度为
2
2
;
(2)以(1)中的AB为边的一个等腰三角形ABC,使点C在格点上,且另两边的长都是无理数;
(3)画出△ABC关于点B的中心对称图形△A
1
B
1
C
1
.
答案
解:作图(作图方法不止一种,只要符合题意就算对).
解:作图(作图方法不止一种,只要符合题意就算对).
考点梳理
考点
分析
点评
专题
作图—代数计算作图;作图-旋转变换.
本题考查计算,设计能力,在网格里设计线段AB=2
2
,在2×2的网格可以实现,设计以AB为边的一个等腰三角形ABC,也有多种方法,只要符合题意,画中心对称图形只需要将AB,CB分别延长一倍即可.
本题属于开放型题型,要读懂题目要求,设计画图方案也比较灵活,培养学生运算能力,动手能力.
网格型.
找相似题
设5×4×3cm
3
长方体的一个表面展开图的周长为n cm,则n的最小值是
50cm
50cm
.
(2006·恩施州)请你利用下图,设计一个能求
1
2
+
1
2
2
+
1
2
3
+
1
2
4
+…+
1
2
n
的值的几何图形.
(2002·吉林)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:
(1)使三角形的三边长分别为3、2
2
、
5
(在图(1))中画一个即
可);
(2)使三角形为钝角三角形且面积为4(在图2)中画一个即可).
如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫格点,以格点为顶点按下列要求画
三角形:
(1)以格点为格点画一个三角形,使三边长分别为2、3、
13
;
(2)判断(1)中的三角形是否为直角三角形?
(1)有若干块长方形和正方形硬纸片如图1所示.用若干块这样的硬纸片拼成一个新的长方形,如图2.
①用两种不同的方法,计算图2中长方形的面积;
②我们知道:同一个长方形的面积是确定的数值.
由此,你可以得出的一个等式为:
(a+1)
2
=a
2
+2a+1
(a+1)
2
=a
2
+2a+1
.
(2)有若干块长方形和正方形硬纸片如图3所示.请你用拼图等方法推出一个完全平方公式,画出你的拼图并说明推出的过程.