试题
题目:
(2013·龙岩)如图,A、B、P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为( )
A.
2
B.2
C.2
2
D.4
答案
C
解:∵A、B、P是半径为2的⊙O上的三点,∠APB=45°,
∴∠AOB=2∠APB=90°,
∴△OAB是等腰直角三角形,
∴AB=
2
OA=2
2
.
故选C.
考点梳理
考点
分析
点评
圆周角定理;等腰直角三角形.
由A、B、P是半径为2的⊙O上的三点,∠APB=45°,可得△OAB是等腰直角三角形,继而求得答案.
此题考查了圆周角定理以及等腰直角三角形性质.此题难度不大,注意掌握数形结合思想的应用.
找相似题
(2013·绥化)如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为( )
(2013·临沂)如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是( )
(2013·莱芜)如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( )
(2013·荆门)如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为( )
(2013·葫芦岛)如图,AB是半圆的直径,AB=2,∠B=30°,则
BC
的长为( )