试题
题目:
如图,在⊙O中,
AB
=
AC
,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.
答案
证明:∵
AB
=
AC
,
∴AB=AC
∴△ABC是等腰三角形
∵∠ACB=60°
∴△ABC是等边三角形,
∴AB=BC=CA
∴∠AOB=∠BOC=∠COA.
证明:∵
AB
=
AC
,
∴AB=AC
∴△ABC是等腰三角形
∵∠ACB=60°
∴△ABC是等边三角形,
∴AB=BC=CA
∴∠AOB=∠BOC=∠COA.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系.
根据弧相等,则对应的弦相等从而证明AB=AC,则△ABC易证是等边三角形,然后根据同圆中弦相等,则对应的圆心角相等即可证得.
本题考查了圆心角、弧、弦的关系以及等边三角形的判定,正确理解圆心角、弧、弦的关系是关键.
证明题.
找相似题
(2013·齐齐哈尔)下列说法正确的是( )
(2005·哈尔滨)半径为6的圆中,圆心角α的余弦值为
1
2
,则角α所对的弦长等于( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2002·达州)下列命题中,真命题是( )
(2001·黑龙江)如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为( )