试题
题目:
如图,已知Rt△ABC中,∠C=90°∠A=36°,以C为圆心,CB为半径的圆交AB于P,则弧BP的度数是
72
72
°.
答案
72
解:连CP,如图,
∵∠C=90°∠A=36°,
∴∠B=90°-36°=54°,
又∵CB=CP,
∴∠CPB=∠B=54°,
∴∠PCB=180°-54°-54°=72°,
∴弧BP的度数=72°.
故答案为72.
考点梳理
考点
分析
点评
专题
圆心角、弧、弦的关系.
连CP,由∠C=90°∠A=36°,根据互余求得∠B=90°-36°=54°,又根据等腰三角形的性质得∠CPB=∠B=54°,再根据三角形的内角和定理得到∠PCB=180°-54°-54°=72°,最后根据圆心角的度数等于它所对的弧的度数得到即可弧BP的度数.
本题考查了在同圆或等圆中,如果两个圆心角以及它们对应的两条弧、两条弦中有一组量相等,则另外两组量也对应相等.也考查了三角形的内角和定理以及圆心角的度数等于它所对的弧的度数.
计算题.
找相似题
(2013·齐齐哈尔)下列说法正确的是( )
(2005·哈尔滨)半径为6的圆中,圆心角α的余弦值为
1
2
,则角α所对的弦长等于( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2002·达州)下列命题中,真命题是( )
(2001·黑龙江)如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为( )