试题
题目:
如图⊙O的半径为1cm,弦AB、CD的长度分别为
2
cm,1cm
,则弦AC、BD所夹的锐角α为( )
A.75°
B.45°
C.60°
D.30°
答案
A
解:连接OA、OB、OC、OD,
∵OA=OB=OC=OD=1,AB=
2
,CD=1,
∴OA
2
+OB
2
=AB
2
,
∴△AOB是等腰直角三角形,
△COD是等边三角形,
∴∠OAB=∠OBA=45°,∠ODC=∠OCD=60°,
∵∠CDB=∠CAB,∠ODB=∠OBD,
∴α=180°-∠CAB-∠OBA-∠OBD=180°-∠OBA-(∠CDB+∠ODB)=180°-45°-60°=75°.
故选:A.
考点梳理
考点
分析
点评
圆心角、弧、弦的关系.
根据勾股定理的逆定理可证△AOB是等腰直角三角形,故可求∠OAB=∠OBA=45°,又由已知可证△COD是等边三角形,所以∠ODC=∠OCD=60°,根据圆周角的性质可证∠CDB=∠CAB,而∠ODB=∠OBD,所以∠CAB+∠OBD=∠CDB+∠ODB=∠ODC=60°,再根据三角形的内角和定理可求α.
本题考查了勾股定理的逆定理,圆周角的性质,等边三角形的性质以及三角形的内角和定理.
找相似题
(2013·齐齐哈尔)下列说法正确的是( )
(2005·哈尔滨)半径为6的圆中,圆心角α的余弦值为
1
2
,则角α所对的弦长等于( )
(2003·广州)在⊙O中,C是
AB
的中点,D是
AC
上的任一点(与点A、C不重合),则( )
(2002·达州)下列命题中,真命题是( )
(2001·黑龙江)如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:3两个部分,用所得扇形围成圆锥的侧面,则圆锥的底面半径为( )