试题
题目:
如图,E是等边△ABC的BC边上一点,以AE为边作等边△AEF,连接CF,在CF延长线取一点D,使∠DAF=∠EFC.试判断四边形ABCD的形状,并证明你的结论.
答案
解:四边形ABCD是菱形.
证明:在△ABE、△ACF中
∵AB=AC,AE=AF
∠BAE=60°-∠EAC,∠CAF=60°-∠EAC
∴∠BAE=∠CAF
∴△BAE≌△CAF
∵∠CFA=∠CFE+∠EFA=∠CFE+60°
∠BEA=∠ECA+∠EAC=∠EAC+60°
∴∠EAC=∠CFE
∵∠DAF=∠CFE
∴∠EAC=∠DAF
∵AE=AF,∠AEC=∠AFD
∴△AEC≌△AFD
∴AC=AD,且∠D=∠ACE=60°
∴△ACD和△ABC都是等边三角形
∴四边形ABCD是菱形.
解:四边形ABCD是菱形.
证明:在△ABE、△ACF中
∵AB=AC,AE=AF
∠BAE=60°-∠EAC,∠CAF=60°-∠EAC
∴∠BAE=∠CAF
∴△BAE≌△CAF
∵∠CFA=∠CFE+∠EFA=∠CFE+60°
∠BEA=∠ECA+∠EAC=∠EAC+60°
∴∠EAC=∠CFE
∵∠DAF=∠CFE
∴∠EAC=∠DAF
∵AE=AF,∠AEC=∠AFD
∴△AEC≌△AFD
∴AC=AD,且∠D=∠ACE=60°
∴△ACD和△ABC都是等边三角形
∴四边形ABCD是菱形.
考点梳理
考点
分析
点评
专题
菱形的判定;全等三角形的判定与性质;等边三角形的性质.
在已知条件中求证全等三角形,即△BAE≌△CAF,△AEC≌△AFD,从而得到△ACD和△ABC都是等边三角形,故可根据四条边都相等的四边形是菱形判定.
本题考查了菱形的判定、等边三角形的性质和全等三角形的判定,学会在已知条件中多次证明三角形全等,寻求角边的转化,从而求证结论.
证明题.
找相似题
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )
(2011·西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为( )
(2011·乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为( )