试题
题目:
如图.D为等边△ABC的边AC上一动点.延长AB到E.使BE=CD,连DE交BC于P.求证:DP=PE.
答案
证明:作DM∥AB交BC于M,
∵△ABC是等边三角形,
∴∠C=∠A=∠ABC=60°,
∵DM∥AB,
∴∠CDM=∠A=60°,
∴△CDM是等边三角形,
∴CD=DM,
∵BE=CD,
∴BE=DM,
∵DM∥AB,
∴∠E=∠MDP,∠EBP=∠DMP,
在△DPM与△EPB中,
∵
∠E=∠MDP
BE=DM
∠EBP=∠DMP
,
∴△DPM≌△EPB,
∴DP=PE.
证明:作DM∥AB交BC于M,
∵△ABC是等边三角形,
∴∠C=∠A=∠ABC=60°,
∵DM∥AB,
∴∠CDM=∠A=60°,
∴△CDM是等边三角形,
∴CD=DM,
∵BE=CD,
∴BE=DM,
∵DM∥AB,
∴∠E=∠MDP,∠EBP=∠DMP,
在△DPM与△EPB中,
∵
∠E=∠MDP
BE=DM
∠EBP=∠DMP
,
∴△DPM≌△EPB,
∴DP=PE.
考点梳理
考点
分析
点评
等边三角形的性质;全等三角形的判定与性质.
作DM∥AB交BC于M,可得出△CDM是等边三角形,BE=DM,再求出△DPM≌△EPB,由全等三角形的性质即可得出结论.
本题考查的是等边三角形的性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.
找相似题
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·柳州)如图,点P(a,a)是反比例函数y=
16
x
在第一象限内的图象上的一个点,以点P为顶点作等边△PAB,使A、B落在x轴上,则△POA的面积是( )
(2012·凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )
(2011·西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为( )
(2011·乌鲁木齐)如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为( )