试题

题目:
(2008·乌兰察布)先化简,再求值
x+1
x2+1
÷
(x+1)3
x4-1
-
x-3
x+1
,其中x=
3
+1

答案
解:
x+1
x2+1
÷
(x+1)3
x4-1
-
x-3
x+1

=
x+1
x2+1
·
(x2+1)(x+1)(x-1)
(x+1)3
-
x-3
x+1

=
x-1
x+1
-
x-3
x+1

=
2
x+1

当x=
3
+1
时,
原式=
2
x+1
=
2
3
+1+1
=
2
3
+2
=2(2-
3
)=4-2
3

解:
x+1
x2+1
÷
(x+1)3
x4-1
-
x-3
x+1

=
x+1
x2+1
·
(x2+1)(x+1)(x-1)
(x+1)3
-
x-3
x+1

=
x-1
x+1
-
x-3
x+1

=
2
x+1

当x=
3
+1
时,
原式=
2
x+1
=
2
3
+1+1
=
2
3
+2
=2(2-
3
)=4-2
3
考点梳理
分式的化简求值;分母有理化.
先除后减,做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分;做减法运算时,应是同分母,可以直接通分.最后把数代入求值.
考查分式的化简与求值,主要的知识点是因式分解、通分、约分等.
计算题.
找相似题