试题
题目:
(2009·济宁)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是( )
A.
1
2
B.
1
4
C.
1
5
D.
1
10
答案
C
解:观察这个图可知:大正方形的边长为
20
,总面积为20平米,而阴影区域的边长为2,面积为4平米;故飞镖落在阴影区域的概率
1
5
.故选C.
考点梳理
考点
分析
点评
几何概率.
根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.
本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率;关键是得到两个正方形的边长.
找相似题
(2013·玉溪)如图,在一块菱形菜地ABCD中,对角线AC与BD相交于点O,若在菱形菜地内均匀地撒上种子,则种子落在阴影部分的概率是( )
(2013·恩施州)如图所示,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域内的概率为( )
(2010·锦州)如图是由四个全等的直角三角形围成的,若两条直角边分别为3和4,则向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑落在线上的情形)( )
(2007·临沂)小明随机地在如图所示的正三角形及其内部区域投针,则针扎到其内切圆(阴影)区域的概率为( )
(2005·衢州)如图,是一个被分成6等份的扇形转盘,小明转了2次结果指针都停留在红色区域.小明第3次再转动,指针停留在红色区域的概率是( )