试题

题目:
化简:(1)
2
+
3
10
+
14
+
15
+
21

(2)
6
+4
3
+3
2
18
+
12
+3+
6

答案
解:(1)原式=
2
+
3
2
(
5
+
7
)+
3
(
5
+
7
)   

=
2
+
3
(
2
+
3
)(
5
+
7
)

=
1
5
+
7

=
7
-
5
7-5
=
1
2
(
7
-
5
)


(2)原式=
6
(1+2
2
+
3
6
(
3
+
2
)+  
3
(
3
+
2

=
6
(1+
2
+
2
+
3
)
3
(
3
+
2
)(
2
+1)

=
2
·(
1
3
+
2
+
1
2
+1
)

=
2
·(
3
-
2
+
2
-1)

=
6
-
2

解:(1)原式=
2
+
3
2
(
5
+
7
)+
3
(
5
+
7
)   

=
2
+
3
(
2
+
3
)(
5
+
7
)

=
1
5
+
7

=
7
-
5
7-5
=
1
2
(
7
-
5
)


(2)原式=
6
(1+2
2
+
3
6
(
3
+
2
)+  
3
(
3
+
2

=
6
(1+
2
+
2
+
3
)
3
(
3
+
2
)(
2
+1)

=
2
·(
1
3
+
2
+
1
2
+1
)

=
2
·(
3
-
2
+
2
-1)

=
6
-
2
考点梳理
分母有理化.
两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解,约分后再化简.
此题主要考查分母有理化,把分母分组分解可使运算简便.
计算题.
找相似题