试题
题目:
观察下列各式的计算:
1
1+
2
=
2
-1
(1+
2
)(
2
)-1
=
2
-1;
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
;
1
3
+
4
=
4
-
3
(
3
+
4
)(
4
-
3
)
=
4
-
3
;
…
从计算结果中找出规律及方法,并利用这一规律及方法计算:
1
1+
2
+
1
2
+
3
+
1
3
+
4
+…+
1
n-1
+
n
+
1
n
+
n+1
(n>1,且n是整数).
答案
解:原式=
2
-1+
3
-
2
+
4
-
3
+…+
n+1
-
n
=
n+1
-1.
解:原式=
2
-1+
3
-
2
+
4
-
3
+…+
n+1
-
n
=
n+1
-1.
考点梳理
考点
分析
点评
专题
分母有理化.
根据已知得出
2
-1+
3
-
2
+
4
-
3
+…+
n+1
-
n
,合并后求出即可.
本题考查了分母有理化和二次根式的加减的应用,主要考查学生的阅读能力和计算能力.
规律型.
找相似题
(2005·湘潭)下列算式中,你认为错误的是( )
(2005·广元)如果
a=
1
2
+1
,b=
2
-1
,那么( )
(2003·无锡)化简
1
3
-
2
的结果是( )
(2002·金华)把
1
2
-1
分母有理化的结果是( )
(2002·嘉兴)化简:
1
2
-1
=( )