试题
题目:
如果正比例函数y=(3k-2)x的图象在第二、四象限内,那么k的取值范围是
k<
2
3
k<
2
3
.
答案
k<
2
3
解:正比例函数y=(3k-2)x的图象经过第二、四象限,
∴3k-2<0,
解得,k<
2
3
.
故答案是:k<
2
3
.
考点梳理
考点
分析
点评
正比例函数的性质.
根据正比例函数的性质(正比例函数y=kx(k≠0),当k<0时,该函数的图象经过第二、四象限)解答.
本题主要考查了正比例函数的性质.正比例函数y=kx(k≠0),当k<0时,该函数的图象经过第二、四象限;当k>0时,该函数的图象经过第一、三象限.
找相似题
(2011·广州)下列函数中,当x>0时,y值随x值增大而减小的是( )
(2004·盐城)在正比例函数y=3x中,y随x的增大而
增大
增大
(填“增大”或“减小”).
(2011·泉州质检)已知正比例函数y=kx(k≠0)的图象经过第一象限和第三象限,请写出符合上述条件的一个解析式:
如y=2x(答案不唯一)
如y=2x(答案不唯一)
.
(2010·栖霞区二模)写出一个图象位于第二、四象限的正比例函数的表达式是
答案不唯一,如y=-x等
答案不唯一,如y=-x等
.
(2009·晋江市质检)已知正比例函数y=kx(k≠0),且y随x的增大而增大,请写出符合上述条件的k的一个值:
y=2x(答案不唯一)
y=2x(答案不唯一)
.