试题

题目:
(2013·贺州)某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.
(1)篮球和足球的单价各是多少元?
(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?
答案
解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:
1500
x+40
=
900
x

解得:x=60,
经检验:x=60是原分式方程的解,
则x+40=100,
答:篮球和足球的单价各是100元,60元;

(2)设恰好用完1000元,可购买篮球m个和购买足球n个,
由题意得:100m+60n=1000,
整理得:m=10-
3
5
n,
∵m、n都是整数,
∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;
∴有三种方案:
①购买篮球7个,购买足球5个;
②购买篮球4个,购买足球10个;
③购买篮球1个,购买足球15个.
解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:
1500
x+40
=
900
x

解得:x=60,
经检验:x=60是原分式方程的解,
则x+40=100,
答:篮球和足球的单价各是100元,60元;

(2)设恰好用完1000元,可购买篮球m个和购买足球n个,
由题意得:100m+60n=1000,
整理得:m=10-
3
5
n,
∵m、n都是整数,
∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;
∴有三种方案:
①购买篮球7个,购买足球5个;
②购买篮球4个,购买足球10个;
③购买篮球1个,购买足球15个.
考点梳理
分式方程的应用;二元一次方程的应用.
(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程
1500
x+40
=
900
x
,再解方程可得答案;
(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.
此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.
找相似题