试题
题目:
在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,则甲、乙工程队单独完成这项任务各需要
4天、6
4天、6
天.
答案
4天、6
解:设甲工程队单独完成任务需x天,则乙工程队单独完成任务需(x+2)天,
依题意得
2
x
+
3
x+2
=1,
化为整式方程得x
2
-3x-4=0,
(x+1)(x-4)=0,
解得x=-1或x=4,
检验:当x=4和x=-1时,x(x+2)≠0,
∴x=4和x=-1都是原分式方程的解.
但x=-1不符合实际意义,故x=-1舍去;
∴乙单独完成任务需要x+2=6(天).
答:甲、乙工程队单独完成任务分别需要4天、6天.
故答案为:4天、6.
考点梳理
考点
分析
点评
分式方程的应用.
求的是工作时间,工效已知,一定是根据工作总量为1,来列等量关系,本题的关键描述语是:甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.等量关系为:甲做2天的工作量+乙做3天的工作量=1.
本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
某人骑自行车比步行每小时多走8千米,如果他步行12千米所用的时间与骑自行车36千米所用的时间相等,求他骑自行车的速度.
列分式方程解应用题:
北京与天津之间相距120千米,一高速列车在北京、天津间运营.某次运营时,列车先由北京到天津,再由天津返回北京.已知去天津时的行驶时间比由天津返回北京的行驶时间多用了6分钟,而由天津返回北京的平均速度是去天津时平均速度的
6
5
倍,那么这次运营时由北京到天津的平均速度是每小时多少千米?
一列火车从车站开出,预计行程450千米.当它开出36时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.
(2y1y·集美区模拟)有一天,小强和爷爷爬山,已知山脚离山顶的路程为3yy米,小强让爷爷先上2分钟,然后追爷爷,
(1)已知小强爬山的速度是爷爷的1.2倍,两c恰好同时爬上山顶,求爷爷的速度是每分钟多少米?
(2)若小强想在爷爷离山顶的路程大于1yy米的某处追上爷爷,那么小强的速度v必须大于多少?