试题
题目:
2002年9月28日,“希望杯”组委会第二次赴俄考查团启程,途经哈巴罗夫斯克和莫斯科,两地航程约9000千米,往返飞行所用的时间并不相同,这是因为在北半球的高纬度地区,有一股终年方向恒定的西风,人们称它为“高空西风带”.已知往返飞行的时间相差1.5小时,飞机在无风天气的平均时速为每小时1000千米,那么西风速度最接近( )
A.60千米/小时
B.70千米/小时
C.80千米/小时
D.90千米/小时
答案
C
解:设西风速度为x千米/小时.
9000
1000-x
-
9000
1000+x
=1.5,
解得:x≈82或x≈-12082(不合题意,舍去).
故选C.
考点梳理
考点
分析
点评
专题
分式方程的应用.
根据逆风用的时间-顺风用的时间=1.5列式求值即可.
考查分式方程的应用;根据时间得到相应的等量关系是解决本题的关键.
行程问题.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
某人骑自行车比步行每小时多走8千米,如果他步行12千米所用的时间与骑自行车36千米所用的时间相等,求他骑自行车的速度.
列分式方程解应用题:
北京与天津之间相距120千米,一高速列车在北京、天津间运营.某次运营时,列车先由北京到天津,再由天津返回北京.已知去天津时的行驶时间比由天津返回北京的行驶时间多用了6分钟,而由天津返回北京的平均速度是去天津时平均速度的
6
5
倍,那么这次运营时由北京到天津的平均速度是每小时多少千米?
一列火车从车站开出,预计行程450千米.当它开出36时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.
(2y1y·集美区模拟)有一天,小强和爷爷爬山,已知山脚离山顶的路程为3yy米,小强让爷爷先上2分钟,然后追爷爷,
(1)已知小强爬山的速度是爷爷的1.2倍,两c恰好同时爬上山顶,求爷爷的速度是每分钟多少米?
(2)若小强想在爷爷离山顶的路程大于1yy米的某处追上爷爷,那么小强的速度v必须大于多少?