试题
题目:
某项工程,甲、乙两队合作需要m天完成,甲队单独做需要n天完成(n>m),那么乙队单独完成需要的时间是( )天.
A.n-m
B.
1
1
m
-
1
n
C.
1
n-m
D.
1
1
n
-
1
m
答案
B
解:设工作总量为1,乙队单独完成需要的时间是x天,那么乙的工作效率为
1
x
,甲的工作效率为
1
n
,两队合作m天完成.那么可得:
m
x
+
m
n
=1
.
解得:x=
1
1
m
-
1
n
.故选B.
考点梳理
考点
分析
点评
专题
分式方程的应用.
设工作总量为1,关键描述语:“甲、乙两队合作需要m天完成”;等量关系为:甲m天的工作量+乙m天的工作量=1,根据等量关系列式.
列分式方程解应用题与所有列方程解应用题一样,重点在于准确地找出相等关系,这是列方程的依据.本题主要用到的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.
工程问题.
找相似题
(2013·梧州)父子两人沿周长为a的圆周骑自行车匀速行驶.同向行驶时父亲不时超过儿子,而反向行驶时相遇的频率增大为11倍.已知儿子的速度为v,则父亲的速度为( )
某人骑自行车比步行每小时多走8千米,如果他步行12千米所用的时间与骑自行车36千米所用的时间相等,求他骑自行车的速度.
列分式方程解应用题:
北京与天津之间相距120千米,一高速列车在北京、天津间运营.某次运营时,列车先由北京到天津,再由天津返回北京.已知去天津时的行驶时间比由天津返回北京的行驶时间多用了6分钟,而由天津返回北京的平均速度是去天津时平均速度的
6
5
倍,那么这次运营时由北京到天津的平均速度是每小时多少千米?
一列火车从车站开出,预计行程450千米.当它开出36时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地.求这列火车的速度.
(2y1y·集美区模拟)有一天,小强和爷爷爬山,已知山脚离山顶的路程为3yy米,小强让爷爷先上2分钟,然后追爷爷,
(1)已知小强爬山的速度是爷爷的1.2倍,两c恰好同时爬上山顶,求爷爷的速度是每分钟多少米?
(2)若小强想在爷爷离山顶的路程大于1yy米的某处追上爷爷,那么小强的速度v必须大于多少?