试题
题目:
已知:如图,M是△ABC的边BC上一点,F、E在AM上,且BE∥CF,BE=CF.试说明AM是BC边上的中线.
答案
证明:∵BE∥CF,
∴∠CFM=∠BEM,∠MBE=∠MCF,
又∵BE=CF,
∴△BEM≌△CFM(ASA),
∴BM=MC,
即AM是BC边上的中线.
证明:∵BE∥CF,
∴∠CFM=∠BEM,∠MBE=∠MCF,
又∵BE=CF,
∴△BEM≌△CFM(ASA),
∴BM=MC,
即AM是BC边上的中线.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质.
要证AM是BC边上的中线,只要证明BM=CM即可,只要证△BEM≌△CEM(ASA)即可得,由条件很易证明.
三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )