全等三角形的判定与性质;等腰三角形的性质.
(1)此题要通过构造全等三角形来求解,延长AE交BC的延长线于M;由AP∥BC,及AE平分∠PAB,可求得∠BAE=∠M,即AB=BM,因此直线证得AD=MC即可;在等腰△ABM中,BE是顶角的平分线,根据等腰三角形三线合一的性质知:E是AM的中点,即AE=EM,而PA∥BM,即可证得△ADE≌△MCE,从而得到所求的结论.
(2)由(1)的全等三角形可知:△ADE、△MCE的面积相等,从而将所求四边形的面积转化为等腰△ABM的面积,易得AM、BE的值,从而根据三角形的面积公式求得△ABM的面积,即四边形ADCB的面积.
此题主要考查的是全等三角形的判定和性质,同时还涉及了角平分线定义、平行线的性质以及等腰三角形的性质,正确地构造出全等三角形是解答此题的关键.