试题
题目:
如图(1),一块含45°的三角板ABC和另一块含45°的三角板DEC直角顶点重合,显然图中有AD=BE,AD⊥BE.问当三角板DEC绕C旋转到如图(2)的位置时,
(1)AD=BE是否成立?若成立,请给出证明;若不成立,请说明理由.
(2)求证:AD⊥BE.
答案
证明:(1)∵△CAB与△CDE为等腰直角三角形,∠ACB=∠DOE=90°,
∴AC=BC,CD=CE,∠DCA=∠ECB,
∵在△ACD与△BCE中,
AC=BC
∠DCA=∠ECB
CD=CE
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)∵△ACD≌△BCE,
∵∠DAC=∠EBC,
∵∠CAB+∠CBA=90°,
∴∠DAB+∠EBA=90°,
∴AD⊥BE.
证明:(1)∵△CAB与△CDE为等腰直角三角形,∠ACB=∠DOE=90°,
∴AC=BC,CD=CE,∠DCA=∠ECB,
∵在△ACD与△BCE中,
AC=BC
∠DCA=∠ECB
CD=CE
∴△ACD≌△BCE(SAS),
∴AD=BE;
(2)∵△ACD≌△BCE,
∵∠DAC=∠EBC,
∵∠CAB+∠CBA=90°,
∴∠DAB+∠EBA=90°,
∴AD⊥BE.
考点梳理
考点
分析
点评
全等三角形的判定与性质.
(1)根据等腰直角三角形的性质,可证△ACD≌△BCE,根据全等三角形的性质可证AD=BE;
(2)根据全等三角形的性质可得∠DAC=∠EBC,从而得到∠DAB+∠EBA=90°,即可证明AD⊥BE.
本题考查了全等三角形的判定和性质、等腰直角三角形、旋转的性质,此题综合性较强,难度中等.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )