试题
题目:
如图,点A,C,B,D在同一条直线上,AC=BD,AM=CN,BM=DN.求证:AM∥CN.
答案
证明:∵AC=BD,
∴AC+CB=DB+CB,
即:AB=CD,
AC=BD在△AMB和△CND中,
AM=CN
AB=CD
BM=DN
,
∴△AMB≌△CND(SSS),
∴∠A=∠NCD,
∴AM∥CN.
证明:∵AC=BD,
∴AC+CB=DB+CB,
即:AB=CD,
AC=BD在△AMB和△CND中,
AM=CN
AB=CD
BM=DN
,
∴△AMB≌△CND(SSS),
∴∠A=∠NCD,
∴AM∥CN.
考点梳理
考点
分析
点评
专题
全等三角形的判定与性质;平行线的判定.
首先根据AC=BD可得AB=CD,再加上条件AM=CN,BM=DN可利用SSS定理证明△AMB≌△CND,再根据全等三角形的性质可得∠A=∠NCD,即可证明AM∥CN.
此题主要考查了三角形全等的判定方法和性质,以及平行线的判定,关键是掌握全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.
证明题.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )