试题
题目:
已知:如图,D是△ABC的边AB上的一点,DF交AC于点E,DE=FE,FC∥AB.求证:AE=CE.
答案
证明:∵AB∥FC,
∴∠ADE=∠CFE,
在△AED和△CEF中,
∠ADE=∠CFE,
DE=FE,
∠AED=∠CEF,
∴△AED≌△CEF(ASA),
∴AE=CE.
证明:∵AB∥FC,
∴∠ADE=∠CFE,
在△AED和△CEF中,
∠ADE=∠CFE,
DE=FE,
∠AED=∠CEF,
∴△AED≌△CEF(ASA),
∴AE=CE.
考点梳理
考点
分析
点评
全等三角形的判定与性质;平行线的性质.
此题根据已知条件及对顶角相等的知识先证得△AED≌△CEF,则易求证AE=CE.
主要考查了全等三角形的判定定理和性质;由平行线得到内错角相等是解决本题的突破口,做题时注意运用.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )