题目:
将长方形纸片沿对角线剪开(如图1),得到两个全等的△ABC和△DEF(如图2),再将这两个三角形摆放成如图3,使B,F,C,D在同一条直线上.
(1)求证:AB⊥DE;
(2)设DE分别交AB、AC于P、M,若PB=BC,证明:AM=DM.
答案
证明:(1)∵∠A=∠D,∠B+∠A=90°,
∴∠B+∠D=90°,
∴∠BPD=180°-(∠B+∠D)=90°,
∴AB⊥DE;
(2)∵∠BPD=∠ACB,∠D=∠A,BP=BC,
∴△BPD≌△BCA(AAS),
∴PD=CA.
连接BM,则在Rt△BPM和Rt△BCM中,BP=BC,BM=BM,

∴Rt△BPM≌Rt△BCM(HL),
∴PM=CM.
∴PD-PM=CA-CM.
∴MA=MD.
证明:(1)∵∠A=∠D,∠B+∠A=90°,
∴∠B+∠D=90°,
∴∠BPD=180°-(∠B+∠D)=90°,
∴AB⊥DE;
(2)∵∠BPD=∠ACB,∠D=∠A,BP=BC,
∴△BPD≌△BCA(AAS),
∴PD=CA.
连接BM,则在Rt△BPM和Rt△BCM中,BP=BC,BM=BM,

∴Rt△BPM≌Rt△BCM(HL),
∴PM=CM.
∴PD-PM=CA-CM.
∴MA=MD.