题目:
如图,已知∠MAN=120°,AC平分∠MAN.B、D分别在射线AN、AM上.
(1)在图(1)中,当∠ABC=∠ADC=90°时,求证:AD+AB=AC.
(2)若把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°,其他条件不变,如图(2)所示.则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
答案
(1)证明:∵∠MAN=120°,AC平分∠MAN,
∴∠DAC=∠BAC=60°
∵∠ABC=∠ADC=90°,
∴∠DCA=∠BCA=30°,
在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°
∴AC=2AD,AC=2AB,
∴AD+AB=AC;
(2)解:结论AD+AB=AC成立.
理由如下:在AN上截取AE=AC,连接CE,

∵∠BAC=60°,
∴△CAE为等边三角形,
∴AC=CE,∠AEC=60°,
∵∠DAC=60°,
∴∠DAC=∠AEC,
∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,
∴∠ADC=∠EBC,
∴△ADC≌△EBC,
∴DC=BC,DA=BE,
∴AD+AB=AB+BE=AE,
∴AD+AB=AC.
(1)证明:∵∠MAN=120°,AC平分∠MAN,
∴∠DAC=∠BAC=60°
∵∠ABC=∠ADC=90°,
∴∠DCA=∠BCA=30°,
在Rt△ACD中,∠DCA=30°,Rt△ACB中,∠BCA=30°
∴AC=2AD,AC=2AB,
∴AD+AB=AC;
(2)解:结论AD+AB=AC成立.
理由如下:在AN上截取AE=AC,连接CE,

∵∠BAC=60°,
∴△CAE为等边三角形,
∴AC=CE,∠AEC=60°,
∵∠DAC=60°,
∴∠DAC=∠AEC,
∵∠ABC+∠ADC=180°,∠ABC+∠EBC=180°,
∴∠ADC=∠EBC,
∴△ADC≌△EBC,
∴DC=BC,DA=BE,
∴AD+AB=AB+BE=AE,
∴AD+AB=AC.