试题

题目:
如图1,△ABC是边长为4cm的等边三角形,点P,Q分别从顶点A,B同时出发,沿线段AB,BC运动,且它们的速度都为1cm/s.当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s).
青果学院
(1)当t为何值时,△PBQ是直角三角形?
(2)连接AQ、CP,相交于点M,如图2,则点P,Q在运动的过程中,∠CMQ会变化吗?若变化,则说明理由;若不变,请求出它的度数.
答案
青果学院解:(1)设时间为t,则AP=BQ=t,PB=4-t
①当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ,得4-t=2t,t=
4
3

②当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP,得t=2(4-t),t=
8
3

∴当第
4
3
秒或第
8
3
秒时,△PBQ为直角三角形.

(2)∠CMQ=60°不变.
在△ABQ与△CAP中,
AB=AC
∠B=∠CAP=60°
AP=BQ

∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.
青果学院解:(1)设时间为t,则AP=BQ=t,PB=4-t
①当∠PQB=90°时,
∵∠B=60°,
∴PB=2BQ,得4-t=2t,t=
4
3

②当∠BPQ=90°时,
∵∠B=60°,
∴BQ=2BP,得t=2(4-t),t=
8
3

∴当第
4
3
秒或第
8
3
秒时,△PBQ为直角三角形.

(2)∠CMQ=60°不变.
在△ABQ与△CAP中,
AB=AC
∠B=∠CAP=60°
AP=BQ

∴△ABQ≌△CAP(SAS),
∴∠BAQ=∠ACP,
∴∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.
考点梳理
全等三角形的判定与性质;等边三角形的性质.
(1)需要分类讨论:分∠PQB=90°和∠BPQ=90°两种情况;
(2)∠CMQ=60°不变.通过证△ABQ≌△CAP(SAS)得到:∠BAQ=∠ACP,所以由三角形外角定理得到∠CMQ=∠ACP+∠CAM=∠BAQ+∠CAM=∠BAC=60°.
本题考查了全等三角形的判定与性质,等边三角形的性质.等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
动点型.
找相似题