试题
题目:
如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.求∠BFD的度数.
答案
解:∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
AB=AC
∠BAE=∠C
AE=CD
,
∴△ABE≌△CAD(SAS),
∴∠ABE=∠CAD,
∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.
解:∵△ABC是等边三角形,
∴AB=AC,∠BAE=∠C=60°,
在△ABE和△CAD中,
AB=AC
∠BAE=∠C
AE=CD
,
∴△ABE≌△CAD(SAS),
∴∠ABE=∠CAD,
∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.
考点梳理
考点
分析
点评
全等三角形的判定与性质;等边三角形的性质.
根据等边三角形性质得出AB=AC,∠BAE=∠C=60°,证△ABE≌△CAD,推出∠ABE=∠CAD,根据三角形外角性质求出∠BFD=∠BAC,即可求出答案.
本题考查了等边三角形的性质,三角形外角性质,全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.
找相似题
(2012·十堰)如图,梯形ABCD中,AD∥BC,点M是AD的中点,且MB=MC,若AD=4,AB=6,BC=8,则梯形ABCD的周长为( )
如图,等边△ABC中,BD⊥AB,CD⊥AC,P为AB的中点,将△BDP沿DP对折至△EDP,延长PE交AC于点Q,DP,DQ分别交BC于M,N两点,连AE,下列结论:
①∠PDQ=60°;②AE∥DP;③AC=6CQ;④AE=
2
PE
其中正确的有( )
如果两个三角形有两边和其中一边上的高对应相等,那么它们第三边所对的角的关系是( )
△ABC中,AB=AC,BD,CE是AC,AB边上的高,则BE与CD的大小关系为( )
下列判断中正确的是( )